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[1] How well can the extent of arctic sea ice be predicted for lead periods of up to one
year? The forecast ability of a linear empirical model is explored. It uses as predictors
historical information about the ocean and ice obtained from an ice–ocean model
retrospective analysis. The monthly model fields are represented by a correlation-weighted
average based on the predicted ice extent. The forecast skill of the procedure is found by
fitting the model over subsets of the available data and then making subsequent
projections using independent predictor data. The forecast skill, relative to climatology, for
predictions of the observed September ice extent for the pan-arctic region is 0.77 for six
months lead (from March) and 0.75 for 11 months lead (from October). The ice
concentration is the most important variable for the first two months and the ocean
temperature of the model layer with a depth of 200 to 270 m is most important for longer
lead times. The trend accounts for 76% of the variance of the pan-arctic ice extent, so most
of the forecast skill is realized by determining model variables that best represent this
trend. For detrended data there is no skill for lead times of 3 months or more. The forecast
skill relative to the estimate from the previous year is lower than the climate-relative
skill but it is still greater than 0.45 for most lead times. Six-month predictions are also
made for each month of the year and regional three-month predictions are made for
45-degree sectors. The ice-ocean model output significantly improves the predictive skill
of the forecast model.
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1. Introduction

[2] Sea ice is the focus of much research regarding long-
term changes in response to changing greenhouse gas
forcings. Seasonal forecasts of the ice conditions could play
an important role in planning activities by shipping interests
and coastal communities throughout the Arctic. In particu-
lar, knowing if and when shipping lanes might be ice free,
when fishing grounds might clear, or the likely extent of
nearshore open water that could contribute to beach erosion
are all useful pieces of information. The North American Ice
Service (a collaboration of the Canadian Ice Service and the
U. S. National Ice Center) produces summer outlooks of ice
conditions for specific regions, typically in the late spring,
but does not focus on the Arctic as a whole or examine other
seasons of the year. There have been some recent efforts
made to develop statistical forecasts of arctic sea ice extent
at seasonal to annual time periods either for the basin as a
whole or for specific regions.
[3] Early efforts were made by Barnett [1980] and Walsh

[1980] to predict the ice extent in the Bering, Chukchi, and
Beaufort seas. Barnett used the strength of the Siberian
High in April to forecast the ice severity near Barrow in

August with indeterminate results. His studies led to the
definition of the Barnett Severity Index (BSI) to measure
the navigability of the summer waters north of Alaska.
Walsh used empirical orthogonal functions of the sea level
pressure, the surface air temperature, and the ice extent as
predictors of the ice extent for all months of the year along
the Alaskan coast. He found significant skill at lead times of
1 to 2 months and concluded this was the limit of forecast-
ing ability using those predictors.
[4] Drobot and Maslanik [2002] constructed a linear

regression model to forecast the end-of-summer ice con-
ditions in the Beaufort Sea as represented in the BSI a few
months in advance. It is based on four predictors: winter
multiyear ice concentration, spring (May and June) total ice
concentration, March North Atlantic Oscillation index, and
October East Atlantic index. The model explains about 90%
of the variance in the BSI for 1979–2000 within a lead time
of two months.
[5] Johnson et al. [1985] investigated stationary and

cyclostationary (seasonally dependent) forecast models for
the detrended seasonal ice extent in 30� longitudinal sectors,
using data from 1953–1977. They used as predictors the ice
extent in each sector (persistence) and in its east and west
neighbors, the air pressure gradient near the sector, the air
temperature (1000–700 mb thickness), and the sea surface
temperature averaged over large regions of the North
Atlantic or North Pacific oceans. The hindcast skill varied
greatly with the sector and the season. The best seasonal
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predictions were for the summer or winter months. None of
their models, however, had any skill at lead times over 6
months, and most sectors had skill at a lead time of only two
months.
[6] Rigor et al. [2002] studied the response of sea ice to

the Arctic Oscillation (AO) index. They found that the
summertime sea ice concentration (SIC) is strongly corre-
lated with the AO index of the previous winter. A high
winter AO induces changes in sea ice motion that advect
more ice out of the East Siberian and Laptev seas, resulting
in thinner ice there, and a consequent increase in heat flux
from the ocean to the atmosphere that is responsible for
warmer surface air temperatures (SAT). They state, ‘‘The
correlations between the wintertime AO and SIC and SAT
during the subsequent seasons offers the hope of some
predictability.’’
[7] A Markov model for predicting the ice concentration

in Antarctica was developed by Chen and Yuan [2004].
They used a multivariate EOF approach to reduce the
number of variables and obtained good skill for the forecast
of the ice concentration in some locations for up to one year
in advance.
[8] Drobot et al. [2006] developed a statistical model to

predict the pan-arctic minimum ice extent based on multiple
linear regression and used the satellite-observed ice con-
centration, the surface skin temperature, the albedo, and the
downwelling longwave radiative flux as predictor variables.
Their analysis includes prediction periods of up to seven
months (February to September). In all cases the ice
concentration was the most important predictor, but in some
months the skin temperature or the downwelling radiative
flux also contributed to the model. The fraction of the
interannual variance of the minimum ice extent (R2) for
their fit of the minimum ice extent went from 0.90 in
August to 0.46 in February. The predictive skill was not
determined for years beyond those used in the fitting of the
model. This work was extended to regional predictions of
the ice extent using similar predictive variables [Drobot,
2007]. The predictions were for the minimum September ice
extent using either June or March data and were made for
each of four different regions.
[9] Here an important additional source of information

about the ice and ocean system is utilized to formulate
predictor variables. A retrospective analyses of the coupled
ice-ocean system is used to determine not only the observed
ice extent and concentration, but the model mean ice
thickness, the ice thickness distribution, and ocean temper-
ature, salinity, and currents, which can all be used as
potential predictors. Can this additional information be used
to increase the skill of an empirical forecast model over one
that uses surface data only? If so, what variables of the
system are most helpful and why? Does the integrated effect
of previous months or years of daily forcing (temperatures,
winds, and clouds) create conditions within the ice–ocean
system that are predictive of the future ice extent? What is
the role of the trends in forming predictions? And finally,
how predictable is sea ice extent with empirical models?
[10] The primary focus here is on the pan-arctic Septem-

ber mean ice extent but the monthly mean extent in other
months and in regional sectors are considered as well. The
ice-ocean model and the statistical methods will be intro-
duced in section 2; the results for the entire basin will be

shown in section 3 along with an analysis of the forecast
model and its skill; results for other months of the year and
for the different regional sectors are in section 4; a dis-
cussion follows in section 5. The predictive schemes pre-
sented here may point the way for planners to evaluate the
likely future ice extent in individual sectors of the Arctic
Ocean as well as understand the uncertainty of the forecasts.

2. Methods

2.1. Ice-Ocean Numerical Model

[11] We use a coupled ice–ocean model that has been
applied in a wide range of retrospective climate studies
[e.g., Zhang and Rothrock, 2005; Lindsay and Zhang,
2005]. The model is a Pan-arctic Ice-Ocean Modeling and
Assimilation System (PIOMAS) based on the Parallel
Ocean and Ice Model (POIM) of Zhang and Rothrock
[2003]. It consists of the Parallel Ocean Program (POP)
ocean model developed at Los Alamos National Laboratory
coupled to a multicategory thickness and enthalpy distribu-
tion (TED) sea ice model [Zhang and Rothrock, 2001;
Hibler, 1980]. The POP model is a Bryan–Cox–Semtner
type ocean model [Bryan, 1969; Cox, 1984; Semtner, 1976]
with numerous improvements, including an implicit free-
surface formulation of the barotropic mode and model
adaptation to parallel computing [e.g., Smith et al., 1992;
Dukowicz and Smith, 1994]. The ice model is a multi-
category ice thickness and enthalpy distribution model that
consists of five main components: 1) a momentum equation
that determines ice motion, 2) a viscous-plastic ice rheology
that determines the internal ice stress, 3) a heat equation that
determines ice temperature profile and ice growth or decay,
4) an ice thickness distribution equation that conserves ice
mass, and 5) an enthalpy distribution equation that con-
serves ice thermal energy. The TED sea ice model has eight
categories each for ice thickness, ice enthalpy, and snow
depth; it uses an efficient ice dynamics model [Zhang and
Hibler, 1997] to solve the ice momentum equation with a
teardrop plastic ice rheology that allows biaxial tensile
stress [Zhang and Rothrock, 2005]. The maximum ice
thickness in each bin is 0.10 m (the open water class),
0.66, 1.93, 4.20, 7.74, 12.74, 19.31, and 27.51 m.
[12] The PIOMAS configuration is based on a general-

ized orthogonal curvilinear coordinate system, covering the
Arctic Ocean, North Pacific, and North Atlantic. The
northern grid pole is displaced into Greenland and the mean
horizontal resolution is about 22 km for the Arctic Ocean,
Barents and GIN (Greenland-Iceland-Norwegian) seas, and
Baffin Bay. The ocean model’s vertical dimension has 25
levels of varying thicknesses (the first eleven levels are
centered at 5.0, 15.0, 25.0, 35.0, 45.0, 55.7, 70.7, 93.7,
126.8, 172.6, and 234.1 m). The bathymetry data set is
obtained by merging the IBCAO (International Bathymetric
Chart of the Arctic Ocean) data set and the ETOPO5 (Earth
Topography Five Minute Gridded Elevation Data Set) data
set [see Holland, 2000]. The POP ocean model is modified
so that open boundary conditions can be specified on the
model’s southern boundaries along 43�N. The open bound-
ary conditions are obtained from a global POIM [Zhang,
2005]. They include monthly sea surface height and ocean
velocity, temperature, and salinity at all depths over the
period 1958–2005.
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2.1.1. Forcing Data
[13] The model is forced with daily fields of 10-m

surface wind velocities, 2-m air temperature and humidity,
precipitation, and downwelling long- and short-wave radi-
ative fluxes, which are obtained from the ERA-40 Reanal-
ysis for the period 1958–2001 and from the ECMWF
operational analysis from 2002 to 2005, forty-eight years
in all. We have used the ERA-40 data instead of those
from NCEP because the downwelling radiative fluxes are
much closer in the ERA-40 data to observations made at
SHEBA and in other field programs [Schweiger, 2004; Liu
et al., 2005].
2.1.2. Ice Concentration Data
[14] The ice concentration data used to build the forecast

model and used for validation is from the Hadley monthly
mean observed ice concentration and SST fields,
HadSST1.1, obtained from the British Atmospheric Data
Centre. This data set, on a 1-degree grid, is based on ship
and aircraft observations before the satellite era, i.e., before
1981, passive microwave-based estimates obtained from the
Goddard Space Flight Center using the NASA team algo-
rithm through 1996, and the NCEP weekly analysis, also
based on the NASA team algorithm, thereafter [Rayner et
al., 2003]. The ice concentration in the ERA-40 forcing data
set, which is used for assimilation in the ice–ocean model,
is based on the Hadley data before 1981 and on the weekly
NCEP analysis thereafter, so the model representation of the
ice concentration and extent is very close to the values in
HadSST [Fiorino, 2004]. The two data sets differ primarily
in that the ERA-40 ice concentration is at a resolution of
2.5 degrees and has been interpolated to daily time steps.
The ice extent is computed as the area with ice concentra-
tion greater than 0.15. The HadSST data show that sea ice
extent in the Arctic is in retreat and the pan-arctic ice extent
both in March (time of maximum) and September (time of
minimum) show significant downward trends (Figure 1).
Meier et al. [2007] report a significant discontinuity in the
HadSST ice concentration data in 1997, when the NCEP
analysis was incorporated. The discontinuity amounts to 8%
of the ice extent in September, based on comparisons of an

overlap period of 1997–2003. This discontinuity will un-
fortunately increase the errors of the statistical models and
the forecasts, errors which are accounted for in the com-
puted forecast skill scores. Discontinuities in the sea ice data
record, such as those identified by Meier et al. are included
in the error statistics and forecast skills. The removal of
such continuities would likely improve results.
2.1.3. Assimilation of Open-Ocean SST
[15] The sea surface temperature in the model is deter-

mined by the energy balance of the top layer of the ocean,
10 m thick. If the surface energy fluxes are in error, the
temperature of this layer will be incorrect and the error will
propagate to deeper levels in the model ocean. Errors in the
energy fluxes are corrected by assimilating the observed
SST. Observations of sea surface temperature are assimilated
in the open water areas only through a nudging procedure
with a 15-day time constant. We use the SST data from the
ERA-40 and operational ECMWF data sets so that there are
no large discrepancies between the adjusted model SST and
the forcing air temperatures. This is because the same SSTs
are used in the atmospheric model that generates the air
temperatures. The ERA-40 SST fields are, like the ice
concentration, based on the Hadley Centre monthly mean
SST fields before 1981, on the weekly Reynold’s SST fields
(from NCEP) through 2001, and on daily ECMWF oper-
ations fields thereafter [Fiorino, 2004]. The fields are based
largely on in situ data from ships and buoys before 1981
with the addition of satellite data thereafter.
[16] The assimilation of SST in the open water areas

increased the model mean surface temperature by up to 5 K
in the Nordic seas in the fall and winter and decreased the
surface temperature by up to –5 K in these same areas in
summer. The increased winter surface temperatures propa-
gated throughout the Arctic Basin, most notably at depths
between 100 and 300 m. Maximum annual mean tempera-
ture differences of +3 K were found within the basin at
173m depth with the assimilation of SST in open water areas.
2.1.4. Assimilation of Ice Concentration
[17] The ice concentration from the ERA-40 and opera-

tional analyses, which are based on the Hadley Centre data
set, are assimilated in a nudging procedure outlined in
Lindsay and Zhang [2006]. In this procedure the model
estimate of the ice concentration is nudged toward the
observations in a manner that gives heavy weighting to
the observations when there is a large difference between
the two. This essentially assimilates ice extent because if
both the model and the observations show similar amounts
of ice, the observations are not heavily weighted. The
procedure makes the assimilation scheme relatively insen-
sitive to the large observational errors in passive microwave
estimates of the ice concentration during the summer.
2.1.5. Climate Indexes
[18] Four different climate indexes are used as possible

predictor variables. These include the Arctic Oscillation
(AO) index obtained from the National Weather Service
Climate Prediction Center (CPC), the North Atlantic Oscil-
lation (NAO, from the CPC), the Pacific North American
pattern (PNA, from the CPC), and the Pacific Decadal
Oscillation (PDO) obtained from the Climate Impacts group
at the University of Washington. In each case a three-month
moving average was used in the predictions.

Figure 1. Time series of observed March (upper) and
September (lower) ice extent from the HadSST data set with
linear trend lines for the 48-year period 1958–2005.
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2.2. Statistical Forecast Model

[19] Briefly, the forecast procedure for predicting the ice
extent with the statistical forecast model for a particular
region and month consists of the following steps.
[20] . Select a set of candidate forecast variables from the

hindcast model fields and climate indexes.
[21] . Select a time interval for determining the forecast

model (so that it can be tested with forecasts beyond the
chosen interval) and choose a lead time for the forecast (the
predictor month).
[22] . Convert time-dependent model fields (from the

predictor month) to time-dependent scalars in a way that
preserves the correlation of the field with the forecast ice
extent.
[23] . Determine the linear prediction equation by select-

ing the two variables that best fit the observations over the
interval.
[24] . Determine the error of the forecast expression in

predicting the ice extent for one or two years after the fit
interval, using independent input data also from after the
interval.
2.2.1. Candidate Variables
[25] Selection of candidate variables (Table 1) is a critical

element in formulating an empirical forecast model. We
include 1) the past history of the observed total ice extent in
order to evaluate the importance of persistence; 2) climate
index variables to represent the state of the atmospheric
circulation over broad scales and because previous research
points to the possible utility of these measures; 3) model-
based fields representing the state of the ice cover (gridded
ice concentration, ice extent, and mean ice thickness)
because they are directly related to the total ice extent;
4) model estimates of the cumulative area of ice and open
water less than three ice thicknesses (0.66, 1.93, and 4.20 m,
the upper bounds of the three thinnest ice thickness classes)
because each represents the open water area fraction after
the melt of a fixed thickness of ice; and 5) ocean temper-
ature, taken from four non-adjacent model levels. The ocean
temperatures from these levels were included because in the
top level, 5 m, the water temperature is also the model SST.

It is at the freezing point in the presence of ice and is most
directly impacted by vertical heat fluxes. At the lowest level
considered, 200—270 m (centered at 234 m), vertical heat
fluxes are weaker due to reduced mixing and thus horizontal
advective processes associated with Atlantic Water transport
are more important. The temperature at the two other levels
(centered at 45 m and 126 m) are included to determine if
intermediate depths are important. Deeper levels were not
considered because of their even more limited interaction
with the surface.
2.2.2. Model Fields
[26] The reanalysis model fields are an estimate of the

variable at each grid cell. To greatly reduce the number of
candidate variables considered for the forecast model, we
condense each monthly field, which consists of thousands
of numbers, to a single number in a manner that conserves
the relationship between the field and the forecast variable.
This is done by finding a weighted average of each monthly
field in which the weighting is the correlation map of the
field with the forecast ice extent. The result is the correlation-
weighted time series (CWT) of each field [Drobot et al.,
2006]. Possible alternatives might be empirical orthogonal
functions (EOF) for the weighting maps and the resulting
principle components (PC) for the time series. To properly
represent the field, several PC would be required and it is
possible that none of them individually is well correlated
with the forecast variable. The CWT is a weighting method
that preserves the correlation in a single time series.
[27] Let Ri,j(m, l) be the temporal correlation of the field

Fi(m–l, y) at the predictor month (with lead time l) with
the ice extent Iext(m, y) (at the forecast month m) for each
location j over the selected time interval, i.e., for the years y
from ystrt to yend. The weighted average of the field for year
y is then

xi m� l; yð Þ ¼

P
j

Fi;j m� l; yð ÞRi;j m;lð Þ
P
j

Ri;j m;lð Þ : ð1Þ

[28] The summations are only over locations that include
just the positive or just the negative correlation areas,
whichever has the largest integral. Other areas are given
zero weight. In other words, if the field is primarily positive,
only the positive areas are included, and if it is primarily
negative, only the negative areas are included so that the
smaller areas do not reduce the influence of the larger areas.
Only the areas in the Arctic Ocean and the peripheral seas,
including the Bering, Barents, Greenland, and Norwegian
seas are used. The CWT is found for each model field
considered and for each pair of forecast and predictor
months, m and m-l.
[29] Four samples of the correlation maps used to create

the CWT for the September pan-arctic Iext for different
prediction months and variables are shown in Figure 2. For
each model field variable and at each lead time a map of the
correlation coefficient with the September observed ice
extent is computed. This map is then used as a weighting
field to determine the mean value of the field for each
month. As seen in the figure, the ice concentration correla-
tion field is most heavily weighted near the ice edge, where
there is substantial variability, while the G2 (area fraction

Table 1. Candidate Variablesa

Name Definition CWT

Prst Persistence of observed total ice extent from
earlier months

AO Arctic oscillation, 3-month average
NAO North Atlantic oscillation, 3-month average
PDO Pacific decadal oscillation, 3-month average
PNA Pacific North American index, 3-month average
IX Ice extent: cells with Iconc > 0.15 = 1, others = 0 x
IC Ice concentration x
H Mean ice thickness x
G1 Fractional area of open water and ice less

than 0.66 m thick
x

G2 Fractional area of open water and ice less
than 1.93 m thick

x

G3 Fractional area of open water and ice less
than 4.20 m thick

x

OT005 Ocean temperature centered at 5-m depth (0�10 m) x
OT045 Ocean temperature at 45-m (40�50 m) x
OT126 Ocean temperature at 126-m (110�150) x
OT234 Ocean temperature at 234-m (200�270 m) x

aThose marked in the CWT column indicate model fields that are
processed to form correlation weighted time series.
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with ice less than 1.93 m thick) and the mean thickness
maps are heavily weighted in the interior of the basin and in
the Greenland and Norwegian seas. The ocean temperature
correlation map shows heavy weighting in a broad region
north and south of Fram Strait. The small area with a
positive correlation is set to zero weighting. Most of the
correlation maps change with the lead time, but because of
the small amount of seasonal variability in the deep ocean
temperature, the correlation maps for the ocean temperature
change very little with the predictor month.
2.2.3. Statistical Model
[30] We use a least squares multiple linear regression

model that includes one or more predictor variables from
the predictor month to estimate the ice extent for a forecast
month [recall Iext(m, y) is the observed ice extent in month
m and year y]. A regression model is determined for the
years in a fit interval int: ystrt to yend. The number of years
is Nyrs = yend � ystrt + 1. The estimated ice extent based on
training data from a given interval is Iext(m, yjint). The
predictor variables are xi(m–l, y), where i indicates the
variable and l is the lead time. The regression equation is then

Îext m; yjintð Þ ¼ a0;int þ
Xnterms

i¼1
ai;intxi m� l; yð Þ þ e m; yjintð Þ;

ð2Þ

where m is the forecast month, m–l is the predictor month
(if the predictor month is from the year before that of the
forecast month, y is reduced by one for the predictor
variables), and e is the error. The constants a0,int and ai,int,
are determined with the least squares procedure using the
years ystrt to yend for the fit.

[31] Variables are selected with a forward stepwise re-
gression procedure. They are added one at a time in the
order in which they are able to explain the variance of the
residuals from the previous set of predictors, starting with
the one most highly correlated with Iext(m, y), until a
predetermined number of terms are found or the coefficients
are not statistically significant. In these analyses only one
variable is usually significant according to the p-value of the
coefficient, although a second variable is found to be
significant in some cases. The goodness of the model fit
within the fit interval is given by the R2 statistic for the fit,

R2 ¼ 1� s2
e

s2
I mjintð Þ

; ð3Þ

where se
2 is the variance of the error and sI(mjint)

2 is the
variance of the observed ice extent for month m. A
backwards selection procedure was also tested. This
resulted in some changes in the variables selected for some
lead times but the forecast skill scores (see below) were
never improved. Variance inflation factors show that for the
two-parameter models collinearity is not a problem.

2.3. Forecast Error Evaluation

[32] The error of the forecast model is evaluated by
making prognostic forecasts using the statistical model,
not on evaluating the fit of the model to a sample of
withheld data from within the fit interval, as is done in
some studies. The distinction is important because the mean
state of the ice-ocean system changes and the statistical
relationships between the variables cannot be assumed
stationary. While the forecast model does assume stationar-
ity, our evaluation of the errors should not. If the system is
stationary, the skill of the forecast would be given by the R2

value of the fit, but if the correlations between the variables
are changing over time the forecast skill may be much
smaller.
[33] Forecasts are found by using CWT weighting maps

and the coefficients from each fit interval to estimate the ice
extent in the subsequent two years. For example, one might
formulate the forecast model (determine CWT, select vari-
ables, and determine coefficients) using years 1–35, then
use that model to forecast the ice extent in years 36 and 37
using predictor data from the same two years. The proce-
dure can be repeated for different fit intervals, which may be
overlapping, and the error in the forecasts can be found for
each interval.
[34] Recall the model fit period is int: ystart to yend. The

CWT variables for the subsequent years yend + 1 and yend +
2 are determined from (1) using the field variables from
those two years and the correlation fields found for the fit
interval. The forecast ice extent is

Îext m; yjintð Þ ¼ a0;int þ
Xnterms

i¼1
ai;intxi m� l; yð Þ ð4Þ

where y is yend +1 or yend + 2. The coefficients ai,int refer to
coefficients determined for the interval ystart to yend.
Intervals of 35 years are used for each fit and the fit
intervals shift forward starting at years 1, 2, . . .,13. For each
fit interval the ice extent for the subsequent two years is
estimated. A total of Nf = 25 forecasts can then be made.

Figure 2. Correlation maps of the pan-arctic September
mean ice extent for four different variables at four different
lead times. These maps are used to form the correlation-
weighted time series (CWT) of each of the variables. G2 is
the area fraction of ice and water less than 1.93 m thick
(Table 1).
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More than two test years is not warranted because the errors
in the forecasts increase as the time of application of the
forecast model is farther removed from the fit interval,
evidence of nonstationarity in the system. Shorter fit
intervals would allow for more test samples but the forecast
skill is found to decrease with shorter fitting intervals. The
forecast error variance for the Nf forecasts is then

s2
ferr ¼

1

Nf

XNf

k¼1
Iext m; yjintkð Þ � Îext m; yjintkð Þ
� �2

: ð5Þ

[35] This procedure uses the most recent 35 years to
determine the coefficients needed to forecast the next two.
Note that these error estimates are far from independent
because the intervals almost entirely overlap and two tests
are made for each fit interval. However, the errors here are
determined from actual forecasts and can better reflect the
influence of the nonstationary aspects of the data sets than
statistics computed by randomly withholding some small
fraction of the data.
[36] The forecast skill is determined relative to a refer-

ence value, in our case either the variance of the observed
ice extent about the climatological mean or about the
previous year’s extent. These two measures represent alter-
native simple methods of predicting the ice extent and the

use of a forecast model is only justified if the error is less
than that of the simple alternatives. The skill is

S ¼ 1�
s2
ferr

s2
ref

: ð6Þ

[37] For the skill relative to climatology sref
2 is the

variance of Iext(m, y) (about its mean) and for the skill
relative to the previous year it is the mean-sum-of-squares
of Iext(m, y) � Iext(m, y � 1). The error variance is larger for
climatology, so the forecast skill score relative to climatol-
ogy, SClim, is greater than that relative to the previous year,
SPrevYr. A perfect forecast would have a skill of 1.0 and any
forecast with a skill less than zero is worse than simply
using the reference value. A skill somewhat greater than
zero is needed to justify the effort of using the forecast
method, but how much greater depends on the specific
application. Note that the skill of the fit within the interval,
relative to climatology, is R2, but this is not a forecast skill.

3. Pan-Arctic September Ice Extent

3.1. Lagged Correlations

[38] To begin, the lagged correlation with the observed
September ice extent is determined for each of the candidate
variables in Table 1 (Figure 3). The squared correlation is
also shown so that variables with both positive and negative
correlations can be compared directly and so that the
fraction of the variance explained in a one-variable model
can be seen. The figure shows that the climate indexes
(green) all have a significant correlation at some lead times
but in no month do they have a better correlation than
persistence of the ice extent. They are all off the bottom of
the R2 plot, less than 0.5. The low correlations of the climate
indexes compared to the ice and ocean variables reflects the
fact that the model ice and ocean system incorporates all
impacts of the changing circulation patterns while the
indexes measure limited aspects of the hemispheric climate.
[39] The model variables have high correlations in part

because of the construction of the CWT values in which the
fields are spatially weighted by the correlations with the ice
extent, thereby maximizing the correlation. Among the
model ice variables (orange), the ice extent is most corre-
lated with the ice concentration for short lead times, with a
positive correlation as expected. The area of open water and
ice less than 0.66 m thick (G1), or 1.93 m thick (G2), is as
well or better correlated for longer lead times, with a
negative correlation because more thin ice and open water
in the early summer leads to lesser ice extent in September.
At one year (October) the mean ice thickness is as well
correlated with the September ice extent as G1 and G2. In
fact throughout the year there are several model variables
that are nearly equivalent in their degree of correlation with
the September ice extent.
[40] The CWT ocean temperatures (red) are well corre-

lated with the ice extent at all lead times with generally
higher correlations at deeper depths. This is because the
ocean temperatures at these levels have little year-to-year
variability and because the CWT procedure has determined
a spatial weighting that maximizes the correlation between
the ocean temperature and the ice extent. The ocean temper-

Figure 3. Lagged correlations of each candidate variable
with the basin-wide September mean ice extent: (a)
Correlations, (b) Squared correlations (see Table 1 for
definitions). Note that the climate indexes in the upper plot
are off the bottom in the lower plot.
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atures are negatively correlated with the ice extent, which is
consistent with warm water temperatures reducing the ice
extent. The difference in the amount of variability of one of
the ice parameters and of the ocean temperature are
reflected in how a one-parameter model reproduces the
observed ice extent. Figure 4 shows the observed September
ice extent and the one-parameter model fits for the G2 ice
fraction and the OT234 ocean temperature at six months
lead. The OT234 fit has a higher R2 value, 0.81 versus 0.77,
because it has less high-frequency uncorrelated variability
than the G2 parameter.
[41] The ocean temperature better captures the decadal-

scale variability in the ice extent than those variables de-
scribing the state of the ice cover, which have large year-to-
year variability that is not well correlated with the observed
September ice extent for lead times of six months or more.

3.2. Forecasts of September Ice Extent

[42] To forecast the observed September ice extent, the
forecast model is fit for two terms with lead times of 0 to

11 months (Table 2). The trivial predictor persistence is not
included for lead zero, when the ice concentration is best
correlated with the current ice extent. Otherwise the first
term selected follows what is expected from Figure 3; the
first two lead times have the ice concentration as the
primary variable, then the ocean temperature at 234 m is
selected for the rest of the lead times. The coefficient of the
first term is always highly significant (p-value very near
zero) while that of the second is often not significant
(p-value greater than 0.05). The second variable selected for
lead times of six months or more is either the NAO or the
AO, but the R2 value of the fits is increased by only a few
percent in each case. The R2 value of the fit is above 0.95 at
zero lead and decreases monotonically but is above 0.80 for
all lead times, substantially higher than the values reported
by Drobot et al. [2006] using just satellite-based informa-
tion. This confirms the hypothesis that the ice–ocean model
simulations provide additional information that can aid in
the prediction of ice extent. The high values of R2 indicate
that the CWT procedure is able to extract good correlations
of the model fields with the forecast ice extent and that the
model state, both in ice parameters as well as in ocean
parameters, provides excellent indicators of the future state
of the ice pack. Because there is little month-to-month
variability in the deep ocean temperature, the R2 values
remain nearly constant for lead times of five months to one
year.
[43] One measure of the system’s nonstationary nature is

seen in a consistent bias in the forecasts. The bias values for
these forecasts are positive for all lead times and show that
the forecast extents are too high, indicating there is typically
less ice and more open water than the forecast model
predicts. The ice extent appears to be declining faster than
historical relationships indicate. The bias values in Table 2
are squared and normalized by the variance of Iext so that
they may be compared to the climate-relative skill scores.
For example, in June the climate-relative skill is reduced by
0.159 in the two-parameter model because of the bias.
[44] The two right columns of Table 2 refer to the forecast

skill based on 25 (non-independent) forecasts, all made in
the last 13 years of the record. The R2 values and skill
scores for two-variable models at different lead times are
shown graphically in Figure 5. The climate-relative skill of
the predictions is lower than the R2 values of the model fit.

Figure 4. The observed September mean ice extent and
the model fit for a six-month lead time (March) using just
the G2 variable (area fraction with less than 1.92 m ice) or
using just the ocean temperature at 234 m. The R2 value for
the G2 fit is 0.77 and for OT234 fit is 0.81.

Table 2. Variables and Fit Parameters for the Pan-Arctic Observed September Mean Ice Extent for One- and Two-Variable Forecast

Modelsa

Lead Time Month Variable Coeff. p-valueb R2 Bias2c SClim SPrevYr

0 Sep IC PDO 9.791�0.064 0.000 0.081 0.950 0.956 0.000 0.002 0.968 0.964 0.930 0.922
1 Aug IC NAO 9.858 0.042 0.000 0.589 0.953 0.954 0.007 0.005 0.954 0.959 0.900 0.911
2 Jul IC NAO 11.685 0.132 0.000 0.095 0.905 0.914 0.070 0.048 0.800 0.801 0.561 0.562
3 Jun OT234 G1 �0.620 �5.663 0.000 0.001 0.825 0.872 0.219 0.159 0.580 0.634 0.077 0.197
4 May OT234 G2 �0.725 �5.813 0.000 0.018 0.824 0.853 0.029 0.015 0.762 0.763 0.476 0.479
5 Apr OT234 PDO �1.178 0.107 0.000 0.173 0.824 0.837 0.029 0.017 0.759 0.760 0.471 0.472
6 Mar OT234 AO �1.045 �0.116 0.000 0.222 0.821 0.833 0.028 0.017 0.755 0.773 0.463 0.502
7 Feb OT234 AO �1.029 �0.167 0.000 0.042 0.821 0.844 0.029 0.066 0.756 0.787 0.465 0.533
8 Jan OT234 AO �1.064 �0.188 0.000 0.024 0.819 0.847 0.030 0.076 0.756 0.764 0.464 0.481
9 Dec OT234 AO �1.083 �0.154 0.000 0.088 0.816 0.835 0.031 0.049 0.755 0.759 0.461 0.470
10 Nov OT234 AO �1.075 �0.162 0.000 0.106 0.814 0.832 0.031 0.051 0.754 0.729 0.460 0.404
11 Oct OT234 NAO �1.095 �0.217 0.000 0.022 0.812 0.842 0.032 0.053 0.753 0.748 0.458 0.446

aThe coefficients, p-values, and multiple R2 values are for the fit with all years. The skill values are based on forecasts.
bp-values for the second parameter less than 0.05 are in bold.
cBias is normalized by the variance of the September ice extent. The bias is always positive for these forecasts.
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If the correlations between the dependent and independent
variables were stationary, these skill scores would be quite
similar to the R2 values. The climate-relative forecast skill
scores of the two-parameter models are all above 0.63.
Interestingly, they increase at long lead times even though
the R2 values do not, suggesting that the fall ocean temper-
ature information may be a better predictor of the summer
ice extent than the spring ocean temperature. For most lead
times the skill scores are not improved with two-parameter
models compared to one-parameter models even though the
R2 values are slightly better.
[45] Much of the skill relative to climatology is due to the

large trend in the ice extent. The trend accounts for 76% of
the variance in the September Iext, very near the R2 values of
many of the model fits. The large trend in the ice extent
means that the previous year is often a better predictor of the
current year than the climatological value, hence when the
forecast skill is computed relative to the previous year,

SPrevYr, it is much lower than with respect to climatology,
SClim (Table 2 and Figure 5).

4. Seasonal and Regional Variability in Forecast
Skill

[46] How does the predictive skill change with the
forecast month? During winter the variability and the trend
in the pan-arctic ice extent is much less than during the
summer (Figure 1) so the skill of the predictions also should
change substantially. The fitting and skill evaluation proce-
dures are applied to make six-month forecasts and error
evaluations for each month of the year (Table 3 and Figure 6).
[47] The R2 values of the model fit over the entire 48-year

period are consistently high, above 0.68 for all months. The
climate-relative forecast skill, however, has a strong seasonal
cycle, with the worst skill in predicting the ice extent for the
late winter and early fall. The months of June and December
have high skill values, greater than 0.85 relative to climatol-
ogy. In all months the best predictor variable is the ocean
temperature at 5 m, 126 m, or 234 m. Again, the skill values
relative to the previous year are much lower than relative to
climatology, and indeed there is no skill in predicting April or
October ice extents.
[48] These procedures are easily adapted to forecast the

ice extent in regions smaller than the entire basin. With
smaller regions the skill scores are substantially smaller, and
forecasts for just three months are made here. The three-
month (from June) predictions of the regional September ice
extent for six 45� longitudinal sectors show that the R2

values and the climatological forecast skill scores for each
of the sectors (Table 4 and Figure 7) are best in sectors
corresponding to the Greenland, Barents, and Kara seas.
However, the forecast skill scores are positive, i.e., better
than climatology, for all sectors in the Northern Sea Route
(sectors 1–4). The only sector with significant interannual
variability but with no skill is that of the Beaufort Sea, with
an R2 value over the entire interval of only 0.43. Much of
the negative skill score is due to the large bias in the
predictions for this sector caused by rapidly changing
relationships between the predictor variables and the re-
gional ice extent. The correlation maps of the primary
predictors selected for four sectors (Figure 8) show maxima
near each of the sectors, but there are some significant
correlations well outside the sectors, showing not only that

Figure 5. Forecast skill scores for the pan-arctic forecast
of the September mean ice extent for different lead times.
The line marked Fit is the R2 value of the two-parameter
model fit over the entire time interval. The other lines are
the forecast skill scores relative to climatology or to the
previous year.

Table 3. Seasonal Six-Month Predictions of the Pan-Arctic Ice Extent for One-and Two-Term Forecast Modelsa

Predictor
Month

Forecast
Month Variable Coeff. p-value R2 Bias2 SClim SPrevYr

Jul Jan OT126 G3 �0.275 �3.777 0.000 0.112 0.699 0.727 0.155 0.046 0.501 0.634 0.000 0.267
Aug Feb OT005 PNA �0.401 0.062 0.000 0.491 0.688 0.697 0.089 0.069 0.474 0.479 0.126 0.135
Sep Mar OT005 OT234 �0.314 �0.204 0.000 0.124 0.781 0.801 0.137 0.114 0.539 0.556 0.011 0.049
Oct Apr OT126 AO �0.588 �0.134 0.000 0.085 0.795 0.816 0.040 0.048 0.575 0.591 �0.085 �0.043
Nov May OT126 AO �0.835 �0.082 0.000 0.441 0.864 0.869 0.001 0.003 0.824 0.835 0.309 0.353
Dec Jun OT126 NAO �0.810 �0.097 0.000 0.207 0.881 0.889 0.002 0.010 0.891 0.898 0.529 0.558
Jan Jul OT126 G1 �0.813 �2.829 0.000 0.026 0.881 0.899 0.007 0.011 0.844 0.848 0.473 0.488
Feb Aug OT126 AO �1.063 �0.177 0.000 0.030 0.877 0.895 0.016 0.033 0.780 0.817 0.260 0.384
Mar Sep OT234 AO �1.045 �0.116 0.000 0.222 0.821 0.833 0.028 0.017 0.755 0.773 0.463 0.502
Apr Oct OT234 G1 �0.721 �2.712 0.000 0.175 0.802 0.817 0.283 0.226 0.422 0.486 �0.434 �0.276
May Nov OT126 OT005 �0.461 �0.564 0.000 0.045 0.772 0.801 0.001 0.000 0.808 0.756 0.523 0.393
Jun Dec OT126 G3 �0.389 �4.619 0.000 0.037 0.811 0.837 0.030 0.008 0.792 0.853 0.304 0.508
aSee Table 2.
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ice may advect into the region, but that there is also
significant covariability in the ice properties over large areas.
[49] Drobot [2007] presents a similar technique to make

predictions for regional sectors, albeit for somewhat differ-
ently defined regions and for the minimum ice extent rather
than for the September mean. The skill scores are computed
by withholding data from within the fit interval (23 years)
rather than by making predictions. They use the CWT
procedure with five satellite-based candidate predictors: ice
concentration, multiyear ice concentration, surface tempera-
ture, and surface albedo. The R2 values of the fits are similar
in Kara Sea [0.73 versus 0.63 in the present study, but are
higher in the Beaufort Sea (0.80 versus 0.41) and in the
Laptev Sea (0.72 versus 0.56)]. The better fits may be
because they use a shorter time interval for the fits so the
recent trends are more apparent.
[50] One reason that the skill scores presented here are

smaller for the sectors than for the entire basin is that the
fraction of the variability accounted for by the trends is
smaller. The R2 values of the fit of a trend line for the
September ice extent in the individual sectors over the
period 1958–2005 are 0.18–0.56 compared to 0.76 for
the entire basin.

5. Discussion

[51] The forecast procedures presented here show con-
siderable skill, when compared to historical variability, in
predicting the observed September pan-arctic ice extent up

to one year in advance using model simulation results for
the predictors. The predictor responsible for much of the
skill for short lead times (one or two months) is the ice
concentration, but for longer lead times the best predictor is
the ocean temperature at a depth of 234 m. It is understand-
able that low ice concentrations in the early summer leads to
low ice extent in the late summer, but at longer lead times
the ocean temperature is the best predictor. Why? First, the
relatively sluggish ocean operates on intrinsically longer
timescales than the overlying sea ice pack [e.g., Morison et
al., 2006; also Figure 4]. Second, although upward heat flux
from several hundred meters depth to the surface is sup-
pressed by a strong halocline in much of the central Arctic
Ocean [e.g., Steele and Boyd, 1998], this heat flux can be
quite strong in the North Atlantic sector, i.e., the Nordic
Seas and the Nansen Basin of the Arctic Ocean [e.g., Steele
and Morison, 1993]. These latter areas lack a strong
permanent halocline [Rudels et al., 1996]. Thus northward
heat transport from the North Atlantic Ocean can be
correlated with the sea ice cover [Zhang et al., 2004].
[52] The CWT procedure is designed to determine a

spatial weighting pattern that maximizes the correlation
with the observed September ice extent, and because of
the strong trend in the extent the best correlation is found in
a broad region of the Arctic Ocean deep water temperature
that shows a similar pattern of low-frequency variability.
Both the ice and the ocean, in particular regions, are
responding to a general warming of the Arctic region. The
ice variables, such as concentration or thickness, show
significant year-to-year variability in addition to the trend
that is not well correlated to the ice extent at the longer lead
times.
[53] The importance of the trend is seen by comparing the

lagged correlations of the predictor variables with the pan-
arctic ice extent, but with the trends removed from both the
ice extent and the predictor variables (Figure 9). These

Figure 6. Skill scores for six-month forecasts of the pan-
arctic mean ice extent for each month of the year, with lines
as in Figure 5.

Table 4. Regional Three-Month Predictions of the Ice Extenta

Sector Longitude Variable R2 Bias2 SClim SPrevYr

1, Barents Sea 15–60 G2 0.724 0.02(�) 0.77 0.713
2, Kara Sea 60–105 G1 0.633 0.00 0.74 0.794
3, Laptev Sea 105–150 G1 0.586 0.01 0.18 0.578
4, East Siberian
Sea

150–195 G1 0.668 0.15 0.08 �0.166

5, Beaufort Sea 195–240 OT234 0.410 0.76 �0.67 �0.329
8, Fram Strait 330–015 IC 0.680 0.00 0.54 0.326

aSee Table 2. All of the p-values for the first term are less than 0.01, so
they are not shown, and for the second term are greater than 0.05.

Figure 7. Map of R2 values of the model fit (thin bars) and
the climate-relative skill scores (thick bars) of three-month
predictions for the observed September ice extent in
individual sectors. The primary predictive variable is shown
for each sector. There is no variability in the ice extent in
sectors 6 and 7.
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detrended lagged correlations are much lower than those
plotted in Figure 3 and the ordering of the most highly
correlated variables differs. The ice variables (extent, con-
centration, thickness, and area fractions) are generally more
highly correlated with the ice extent than the ocean temper-
atures. Also, with lead times of greater than three months,
all of the R2 values are less than 0.5. Consequently, the
forecast skill scores for these lead times are negative for
detrended data. Except for the trend, much of the predictive
information in the ice-ocean system is lost for lead times
greater than about three months.
[54] The predictability of the pan-Arctic ice extent has a

strong seasonal dependence, with the best six-month pre-
dictions made for the summer (May–September) or the
early winter (November–January). In the late winter the
variance of the ice extent is less than in other seasons and a
smaller fraction of it is predictable.
[55] The three-month forecast skill for regional ice

extents is generally smaller and there is no skill in some
sectors because of limited variability in the September ice
extent. The skill is highest in the Fram Strait sector because
of the high correlation between the September ice extent
and the mid-thickness ice fraction, primarily in the region
near the North Pole and in the eastern part of the basin.
There is positive skill in all sectors of the Northern Sea
Route, north of Europe and Siberia. These predictions could
easily be implemented in an operational forecast environ-
ment to support planning of shipping activities.
[56] The optimal predictors determined here are not

necessarily directly related to any specific observations that
may be made at specific locations. The method does not
suggest where or what kind of observations would improve
the forecasts, as the predictors are dependent on the entire
model fields. Any observations that improve the model
representation of the state of the ice-ocean system, either

through creating better physical representations or better
forcing fields or through assimilation, might improve the
forecasts. However, this study may indicate the limits of
predictability of ice conditions with a linear empirical
approach. An improved ice-ocean model would not neces-
sarily improve the forecasts.
[57] The high skill scores obtained for the pan-arctic ice

extent predictions using the ERA-40 data can be attributed
to three main causes: 1) the region is relatively large and
easier to predict than smaller regions because the variability
is reduced through averaging; 2) the Arctic ice-ocean
system has a significant amount of memory; and 3) there
is a strong trend in the basin wide ice extent. The additional
information provided by a coupled ice-ocean model over
surface observations alone does improve the predictability
of the ice extent for forecast periods of up to one year.

6. Postscript

[58] The summer melt observed in 2007 is highly re-
markable. The August 2007 satellite observations of ice
extent have shattered previous records for low ice extent as
shown in the National Snow and Ice Data Center Sea Ice
Index (nsidc.org/data/seaice_index). How well did our fore-
casts methods perform? To make real-time forecasts, the
National Center for Environmental Prediction (NCEP) re-
analysis data, which are available in near real time, were
used for forcing the model. The forecast skill scores are

Figure 9. Lagged correlations of the detrended variables
with the September pan-arctic ice extent. Both the ice extent
and the individual predictors are detrended. The detrending
is done before determining the CWT variables.

Figure 8. Correlation maps of the primary three-month
predictive variables for four different sectors. The correla-
tions are with the observed sector-mean September ice
extent.
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similar to those obtained using the ERA-40 forcing, al-
though slightly worse. The six-month forecast of the pan-
arctic ice extent using March data for August was for very
low ice extents but a record low was not predicted to be
likely. In other words, the six-month forecast was not
accurate. Why? First, the primary predictor in March is
the model ocean temperature at 234 m depth, which may not
be a good predictor of extreme events; it was selected
primarily because it best mirrors the general trend in the
pan-arctic ice extent. The poor forecast is due in part
because the melt in 2007 was much more extreme than
the trend would predict. This would suggest that to better
predict year-to-year variability the deep ocean temperature
should be avoided. However, predictions using other vari-
ables such as the ice thickness or ice concentration did not
do substantially better. A forecast made with July ice
concentration data does call for a record minimum ice
extent in September, though still well above the observed
August ice extent. A forecast method based on past corre-
lations can be expected perform poorly when the interrela-
tionships between the variables in the system are rapidly
changing and when extreme events occur.
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