
Geophysical Research Letters

Model forecast skill and sensitivity to initial conditions
in the seasonal Sea Ice Outlook

E. Blanchard-Wrigglesworth1, R. I. Cullather2, W. Wang3, J. Zhang4, and C. M. Bitz1

1Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA, 2Earth System Science
Interdisciplinary Center, University of Maryland, College Park, Maryland, USA, 3NOAA/NWS/NCEP/Climate Prediction
Center, College Park, Maryland, USA, 4Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle,
Washington, USA

Abstract We explore the skill of predictions of September Arctic sea ice extent from dynamical models
participating in the Sea Ice Outlook (SIO). Forecasts submitted in August, at roughly 2 month lead times,
are skillful. However, skill is lower in forecasts submitted to SIO, which began in 2008, than in hindcasts
(retrospective forecasts) of the last few decades. The multimodel mean SIO predictions offer slightly higher
skill than the single-model SIO predictions, but neither beats a damped persistence forecast at longer
than 2 month lead times. The models are largely unsuccessful at predicting each other, indicating a large
difference in model physics and/or initial conditions. Motivated by this, we perform an initial condition
sensitivity experiment with four SIO models, applying a fixed −1 m perturbation to the initial sea ice
thickness. The significant range of the response among the models suggests that different model physics
make a significant contribution to forecast uncertainty.

1. Introduction

The rapid loss of Arctic sea ice, especially during the summer, that has taken place in recent decades
has resulted in growing interest in the predictability of sea ice on seasonal timescales, in part spurred by
expanding socioeconomic activities in the region. Since 2008, the Study of Environmental Arctic Change has
led an effort to collect and synthesize September Sea Ice Outlooks (SIOs) from the Arctic research community.
The outlooks are predictions of September sea ice extent produced in late spring and early summer using a
range of methods (heuristic, statistical, and dynamical models) and published on three separate dates in early
June, early July, and early August. Results from SIO are collected and summarized by the Sea Ice Prediction
Network (SIPN) and published on the Internet by the Arctic Research Consortium of the United States
(see http://www.arcus.org/sipn/sea-ice-outlook).

Forecast skill in SIO over 2008–2013 was evaluated by Stroeve et al. [2014]. To measure skill, individual
submissions to SIO were considered as single deterministic forecasts. Overall, skill was only marginally better
than a linear trend forecast, and statistical predictions were found to have slightly higher skill than dynamical
model predictions. Unexpectedly, forecast skill did not significantly improve as the forecast lead time
decreased.

While the application of dynamical models to real-world sea ice prediction is in its infancy, considerable
progress has been made over the last decade in assessing and understanding potential predictability in
dynamical models, particularly fully-coupled global climate models (GCMs), using a “perfect-model” approach
[e.g., Koenigk and Mikolajewicz, 2009; Holland et al., 2010; Blanchard-Wrigglesworth et al., 2011a; Day et al.,
2014a]. These studies agree that significant initial-value predictability is about 1–2 years for sea ice area
(or extent) and 3–4 years for sea ice volume, while forced predictability (arising from external forcing)
emerges about 5 years after forecast initialization. Thus, seasonal sea ice forecasting is an initial-value problem.
Additionally, several studies have recently found skill in retrospective forecasts (hindcasts) of September
sea ice extent from spring or early summer initializations over the recent satellite-based observation record
[e.g., Sigmond et al., 2013; Chevallier et al., 2013; Wang et al., 2013; Peterson et al., 2014; Msadek et al., 2014;
Guemas et al., 2014].

There are two primary sources of uncertainty in seasonal predictions: poorly known initial conditions and
model uncertainty. In perfect-model studies, initial conditions are known perfectly and there are no model
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uncertainties, in the sense that the model is used to predict itself. The chaotic growth of prescribed infinitesi-
mal errors in the initial conditions is the only source of forecast error, and thus, the skill found in perfect-model
studies is considered to be the upper limit of predictability for a specific model.

When these models are used to forecast the real world, both sources of error need to be considered. Initial
conditions are often poorly constrained, and model physics are an approximation of the real world. To date,
there have been few efforts to assess how potential predictability of sea ice depends on either source of error.
Considering the first source of error (imperfect initial conditions), Day et al. [2014b] and Msadek et al. [2014]
find that correct initialization of sea ice thickness is key for skillful predictions, while considering the second
source of error (model uncertainty), Juricke et al. [2014] assess how different sea ice strength formulations
affect sea ice predictability.

While completely attributing the gap between potential and actual forecast skill to the source of error is a
complex problem, progress can be made in understanding current forecast skill. In this paper we first
assess the skill of dynamical models in SIO and consider how it compares with the skill from all published
perfect-model and hindcast experiments, and that of a simple statistical benchmark. To help isolate the role of
model uncertainty on forecast error, we then show results from an initial-condition perturbation experiment
using four models that have submitted to SIO in the past. In this experiment, conducted as part of the 2014
SIPN international workshop, we assess the response of the models to an identical perturbation in the sea ice
thickness initial conditions that were used for the 2013 SIO.

2. SIO Model Forecast Skill

We begin by assessing the forecast skill of the model contributions to SIO. The root-mean-square error (RMSE)
is used to evaluate forecast skill of September sea ice extent for outlooks from 2009 to 2014 in each submission
period (early June, early July, and early August, Figure 1). The RMSE is shown for both the ensemble mean
of each model and the multimodel ensemble mean (considering the ensemble mean of each model as one
member of the multimodel ensemble), which we refer to as RMSEsio−obs and RMSEmean(sio)−obs respectively.
They are defined as

RMSEsio−obs =

√√√√ 1
N

2014∑
i=2009

J∑
j=1

(yij − xi)2 (1)

and

RMSEmean(sio)−obs =

√√√√ 1
N

2014∑
i=2009

(ȳi − xi)2, (2)

where yij are mean forecasts of individual models, xi is the observed September sea ice extent, ȳi is the
multimodel ensemble mean of forecasts, j is the model, i is the year, J is the total number of forecasts for
each submission call, and N is the total number of variables in the summation. We use the National Snow and
Ice Data Center September sea ice extent values [Fetterer et al., 2002, updated 2014] for xi in equations (1)
and (2). For all years, SIO model forecasts total 35, 43, and 37 for the June, July, and August submission dates,
respectively.

SIO forecasts are generally initialized in the weeks preceding the submission date, and this time-varying
initialization is illustrated by the line plots in Figure 1. To compare with the results of SIO models, we add to
Figure 1 the RMSE of previously published perfect-model studies, the RMSE of bias-corrected and detrended
hindcast experiments, and the RMSE for all SIO submissions (including statistical and heuristic methods from
Stroeve et al. [2014]). We also include the RMSE of a damped anomaly persistence forecast, whereby the
anomaly from the linear trend in the month preceding the forecast is applied to the following September
linear trend value, scaled by the autocorrelation coefficient between both months and the ratio of the stan-
dard deviations of both months [Van den Dool, 2006]. We also show

√
2𝜎, where 𝜎 is the standard deviation

of observed detrended September sea ice extent—this value represents the lower threshold of skill [Collins,
2002] and, by definition, is also the predictability offered by a linear trend forecast, while a RMSE value of zero
represents perfect skill. We apply an F test to calculate the degree of statistical significance of the difference
among various RMSE values. Details of all experiments displayed in Figure 1 are shown in Table 1.

While other metrics are commonly used in predictability studies, such as the anomaly correlation coefficient,
or ACC (see Collins [2002] for a discussion of different metrics), we choose to use RMSE since it arguably
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Figure 1. RMSE of September sea ice extent forecasts. Crosses show values from perfect-model predictability
experiments; circles indicate results from hindcasts using dynamical models (see Table 1 for details). “SIO all” is the RMSE
value for all SIO forecasts reported in Stroeve et al. [2014], RMSEsio−obs is the RMSE of all individual SIO model forecasts,
RMSEmean(sio)−obs is the RMSE of the SIO model-mean forecast, and RMSEsio−sio is the RMSE of the SIO ensemble
considered as a perfect model, where one model integration is taken as the truth and all other models’ integrations are
forecasts. The time-varying initialization of SIO models in the weeks preceding SIO calls is illustrated by plotting lines
instead of points.

provides a more physically intuitive estimate of predictability error—an actual sea ice extent value rather
than a correlation coefficient. Moreover, calculating an ACC requires a minimum sample size of n = 3 for each
model in SIO and would thus eliminate from our sample size those models that have only one or two yearly
submissions, which represent 35% of the total sample size.

Perfect-model forecasts tend to have higher skill than the hindcasts, yet the skill in both beats the skill
threshold from damped persistence. Interestingly, the skill of the hindcasts improves little at shorter lead
times—much less than the improvement in skill of damped persistence. Conversely, individual SIO model
forecasts (RMSEsio−obs) exhibit very high RMSE values and hence do not beat damped persistence or even

√
2𝜎

for the June and July initializations, indicating no skill. The RMSEsio−obs is significantly different from all hindcast
RMSE values at the 99% level. SIO model skill is slightly higher when considering the SIO model-mean
predictions (RMSEmean(sio)−obs) yet only marginally beats the damped persistence threshold for June
initialization. However, given the insignificant correlation of sea ice extent anomalies between May and

Table 1. List of Dynamical Models Shown in Figure 1

Model Experiment Type Period Reference

GFDL CM3 perfect model present-day control run Tietsche et al. [2014]

HadGEM1.2 perfect model present-day control run Tietsche et al. [2014]

MPI-ESM-LR perfect model present-day control run Tietsche et al. [2014]

EC-EARTH V2 perfect model present-day control run Tietsche et al. [2014]

NCAR CCSM4 perfect model present-day control run Blanchard-Wrigglesworth et al. [2011a]

CanSIPS hindcast 1979–2009 Sigmond et al. [2013]

CNRM-CM5.1 hindcast 1990–2009 Chevallier et al. [2013]

MetOffice GLOSEA5 hindcast 1996–2009 Peterson et al. [2014]

NOAA CFSv2 hindcast 1982–2007 Wang et al. [2013]

GFDL CM2.1 hindcast 1982–2013 Msadek et al. [2014]

GFDL CM2.5 FLOR hindcast 1982–2013 Msadek et al. [2014]

SIO models forecast 2009–2014 Stroeve et al. [2014]
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September [Blanchard-Wrigglesworth et al., 2011b], damped persistence is not expected to yield significant
skill at this lead time. The RMSEmean(sio)−obs is not significantly different from the hindcast RMSE values at the
95% level.

We can also explore the SIO model ensemble by evaluating it as a perfect model—in other words, by
considering one of the model integrations as the truth and all other models’ integrations as forecasts. We call
this RMSEsio−sio in Figure 1 and define it as

RMSEsio−sio =

√√√√ 1
N

2014∑
i=2009

J∑
j=1

∑
k≠j

(yki − yji)2, (3)

where the notation is as that in equation (1). This calculation of RMSE of the SIO model ensemble is equivalent
to the way perfect-model RMSE is calculated in earlier works [see Blanchard-Wrigglesworth et al., 2011a].

This metric can shed light on whether there is a consistent bias (in model physics and/or initial conditions)
among models, as a small value would indicate small intermodel differences in initial conditions and physics,
whether the models skillfully simulate observations or not. If the models predict each other better than
observations, this would be evidence of common errors in the physics and initial conditions employed across
the models. In the case that a common bias exists across models, one would expect RMSEsio−sio to be lower
than RMSEsio−obs. However, if these RMSE values are equal, then it would indicate the models have the same
skill (or lack of skill) in predicting each other or observations. Figure 1 shows that RMSEsio−sio is only marginally
lower than RMSEsio−obs, and not statistically significantly different at the 95% level, indicating that SIO models
are as poor at predicting each other as they are poor at predicting observations. This result suggests that there
are significant differences in physics and/or initial conditions across SIO models.

3. Sensitivity of SIO Models to Initial Conditions

Forecast systems may produce forecasts that disagree with one another by using different initial conditions
and/or different model physics. Dynamical models that participate in SIO range from regional ice-ocean
models to global fully-coupled models, while the observations that are assimilated and the ice-ocean
reanalyses that are used as initial conditions vary substantially (M. Chevallier, personal communication, 2015).
In order to investigate the role of model uncertainty on forecast error and spread, we next test the sensitivity of
the forecast to sea ice thickness initial conditions of dynamical models in SIO. To achieve this, prior to the 2014
SIO workshop modeling groups that submitted to SIO in 2013 were invited to perform an initial-condition
perturbation experiment in which the sea ice thickness was reduced by 1 m relative to the initial conditions
used for the 2013 SIO—referred to as the control run hereafter.

Four groups performed the experiment with the following models: National Center for Atmospheric Research
(NCAR) Community Climate System Model version 4 (CCSM4) [Gent et al., 2011], NASA Global Modeling
and Assimilation Office (GMAO) Goddard Earth Observing System 5 Atmosphere-Ocean General Circulation
Model (AOGCM) [Suarez et al., 2008], NOAA Climate Forecast System version 2 (CFSv2) [Saha et al., 2014],
and Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) [Zhang and Rothrock, 2003]. For the
SIO forecast, NCAR CCSM4 utilizes a global fully-coupled GCM initialized with sea ice thickness anomalies
taken from PIOMAS. To create an ensemble forecast, initial atmospheric states are varied across ensemble
members by taking consecutive days in the control run centered around the initialization date. NASA GMAO
and NOAA CFSv2 are global fully-coupled seasonal forecasting systems. PIOMAS is a regional ice-ocean model
that assimilates sea ice concentration and is forced by NOAA/National Centers for Environmental Prediction
reanalysis data. In forecast mode, PIOMAS produces a seven-member ensemble, each member with pre-
scribed atmospheric conditions taken from reanalysis of the previous 7 years. Further details on the models
and the methodology employed for the experiment and SIO can be found in Table S1 in the supporting infor-
mation and online at the SIO URL (http://www.arcus.org/search-program/seaiceoutlook/2013/july). NCAR
CCSM4, NASA GMAO, and NOAA CFSv2 are initialized in early May, while PIOMAS is initialized in early June.
Initial sea ice thickness was reduced in all four models by 1 m, except in regions where the original sea ice
thickness is less than 1.5 m. In these regions, the perturbation was reduced linearly as a function of the
original control sea ice thickness, as p = h∕1.5, where p is the perturbation and h is the control ice thick-
ness. Initial sea ice area and extent was kept unchanged from the control run. The choice of a 1 m sea ice
thickness perturbation is arbitrarily chosen to be large enough to provide a high signal-to-noise response in
the experiments and is a 2–4 𝜎 anomaly of sea ice thickness [Blanchard-Wrigglesworth and Bitz, 2014].
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Figure 2. Monthly sea ice area in 106 km2 in the control (SIO 2013, black) and experiment (red) runs for (a) NCAR
CCSM4, (b) University of Washington (UW) PIOMAS, (c) NASA GMAO, and (d) NOAA CFSv2.

Figure 2 shows monthly sea ice area in all models for the control and perturbation forecasts. In all four
models, sea ice area is smaller relative to the control, as would be expected from the reduced sea ice thickness
in the initial conditions. However, the response varies across all four models throughout the forecast integra-
tion period (May through September for NCAR CCSM4, NASA GMAO, and NOAA CFSv2, and June through
September for PIOMAS). Figure 3a shows the mean monthly sea ice area difference between the perturbed
and control forecasts. In NCAR CCSM4 the perturbed forecast loses 2.5 × 106 km2 relative to the control
between May and July, and subsequently, the loss in sea ice area stabilizes. NASA GMAO follows a similar
trajectory until July, but subsequently, the loss in sea ice area in the perturbed forecast relative to the
control increases to almost 4.5 × 106 km2 by August—indeed, NASA GMAO loses most sea ice by August
(see Figure 2c). NOAA CFSv2 has a rapid initial loss of 2–2.5 × 106 km2 by June, which then stabilizes for
the reminder of the forecast, while PIOMAS has a strong initial loss in sea ice area over the first 2 months
(June–July), as its summer sea ice area becomes strongly reduced (see Figure 2b). By September, the range of
response across all four models is a loss of 1.9 × 106 km2 to 4.4 × 106 km2. It is unclear why the models have
such a wide range of response, and as shown in Figure S3, the range is only weakly related to the range of sea
ice thickness initial conditions.

We also explore how the growth of the forecast ensemble spread of individual models (a measure of potential
predictability) responds to the initial condition perturbation (see Figure 3b). In NCAR CCSM4, the spread of the
perturbed forecast ensemble for June and July grows faster than the control forecast ensemble, indicating a
more rapid loss of potential predictability in the perturbed forecasts in these months. However, in August and
September both ensemble spreads are comparable (not significantly different at the 95% level), indicating
that potential predictability is similar. PIOMAS has a different response—while the control forecast ensemble
spread grows comparably to that of the control forecast ensemble in NCAR CCSM4, the perturbed forecast
ensemble has a much more reduced spread after July, which is visually apparent in Figure 2b. Lastly, NOAA
CFSv2 has a much slower growth in its control forecast ensemble spread than either NCAR CCSM4 or PIOMAS,
while its perturbed forecast ensemble spread is not significantly different from the control forecast ensemble
spread. Thus, all three models that performed a multiple-run perturbation forecast exhibit different responses
in the growth of forecast ensemble spread.
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Figure 3. (a) Monthly sea ice area difference in 106 km2 between the perturbed and control forecast ensemble-mean
sea ice area for NCAR CCSM4 (black), UW PIOMAS (red), NASA GMAO (blue), and NOAA CFSv2 (green) and (b) forecast
ensemble spread standard deviation in the control (solid) and experiment (dashed) simulations for NCAR CCSM4 (black),
UW PIOMAS (red), and NOAA CFSv2 (green).

4. Discussion

The low skill in SIO models relative to the hindcasts is surprising, particularly considering that some of the
models that have produced hindcasts have also submitted outlooks to SIO (e.g., NOAA CFSv2 and MetOffice
GLOSEA5). It is possible that summer sea ice extent has been less predictable in recent years compared to
previous decades (the time period for which most of the hindcasts were produced, see Table 1), a result also
found within the Geophysical Fluid Dynamics Laboratory (GFDL) hindcasts [Msadek et al., 2014]—indeed,
thinner sea ice conditions may lead to lower predictability [e.g., Holland et al., 2010] and may offset the
expected forecast improvement offered by improved data availability for initialization in recent years [Msadek
et al., 2014]. One may also consider how sea ice persistence has evolved throughout the satellite era, since
sea ice predictability is intrinsically linked with persistence of sea ice anomalies [Day et al., 2014a], and
it has recently been shown that the persistence and reemergence of sea ice anomalies show significant
interannual variability [Bushuk et al., 2015]. Thus, reduced persistence throughout the summer may be
indicative of reduced potential predictability. However, neither persistence nor the skill offered by damped
persistence has decreased in recent years (Figure S1).

Interestingly, some climate reanalysis systems that are used to provide initial conditions for hindcast and
forecast experiments show reduced fidelity in simulating observed September sea ice extent variability in
recent years compared to the earlier period of the satellite observation record (Figure S2) [Msadek et al., 2014,
Figure 1b], and it is plausible that this would imply a reduction in forecast or hindcast skill during recent
years. It is worth noting that the RMSE of SIO submissions of both NOAA CFSv2 and MetOffice GLOSEA5
models is significantly higher than their hindcast RMSE values shown in Figure 1, and no better than
RMSEsio−obs (not shown). Care must be taken, however, when interpreting this result given the small sample
size of individual model submissions to SIO (10 and 7 submissions during 2011–2014 from NOAA CFSv2 and
MetOffice GLOSEA5, respectively).

The multimodel mean of SIO forecasts offer slightly higher skill than the single-model ensemble prediction, a
typical feature seen in other areas of seasonal climate prediction [e.g., Hagedorn et al., 2005] yet neither beats
significantly a damped persistence forecast, perhaps helping explain why statistical models show higher skill
than dynamical models in SIO [Stroeve et al., 2014]. Furthermore, models are equally unskilled at predicting
each other, indicative of a large difference in model physics and/or initial conditions.

Four dynamical models that have participated in SIO have significantly different responses to identical initial
condition perturbations. This result implies that different model physics can result in significantly different
forecast sensitivity to identical initial condition perturbations. Thus, model physics are likely responsible for
a significant component of the large spread in the multimodel September SIOs. Improving the skill of
September sea ice predictions will thus depend not only on better observations and assimilation of the
models’ initial conditions but also on further improving model physics.
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